Skip to main content

Storing Request Statistics Using Redis

If we build a backend service, we probably need to keep any statistics related to our service such as number of requests, average time for processing, number of errors, etc. We may also need to have statistic records in several time precisions for example hourly and daily. The simplest solution, we can just store any information into a table in our database, then calculate the summary when needed or by a request. But, it will cost our system storage and computing resources.

Unlike relational databases or NoSQL that only have CRUD operations in general, Redis operations are related to the type of data that is stored. For example, a list will have push or pop operations, a sorted set will have a ranking, incrementing, or union operation, and so on. For instance for storing request statistics in Redis, we will store statistics of the response time of a backend application. The metrics are minimum time, maximum time, number of responses, and total response time. The last two metrics can be used for calculating the average time to respond. We will also store the statistics for hourly and daily information.

We need several records in sorted sets to store the following information.

  • List of starting times of all periods
  • Metrics of each period
  • Temporary data for aggregating minimum and maximum values

A list of starting times is used to help us to list all metrics records that we have. The record of metrics of each period will be named with starting time of the period.

Our backend application will call a function every time it handles a request with a response time value in milliseconds as the first parameter of the function.

All metrics in a period will be aggregated in a single record directly. Every time the function is called, it will calculate the period based on the calling time and the precision value.

The processes are as follows.

  1. Calculate starting time of current period
  2. Store the response time value in temporary records as both minimum and maximum values of response time
  3. Aggregate data in temporary records with matrics record of the current period
  4. Increment number of responses and total response time in the matrics record of the current period

For this example, we utilize Node.js with the redis module. We also need uuid for generating a random key for temporary records. The implementation is as follows.

function captureStats(responseTime) {
  const now = Date.now();
  const hourly = 3600 * 1000;
  const daily = 24 * 3600 * 1000;
  
  const tempKeyMin = `stats:temp:${uuidv1()}`;
  const tempKeyMax = `stats:temp:${uuidv1()}`;

  // get starting time of the period
  const stimeHourly = Math.floor(now / hourly) * hourly;
  const stimeDaily = Math.floor(now / daily) * daily;
  
  // to store starting time of each period
  const timesHourlyKey = `stats:times:${hourly}`;
  const timesDailyKey = `stats:times:${daily}`;
  
  // to store metrics of each period
  const statsHourlyKey = `stats:${hourly}:${stimeHourly}`; 
  const statsDailyKey = `stats:${daily}:${stimeDaily}`; 

  redisClient.multi()
    .zadd(timesHourlyKey, now, stimeHourly)
    .zadd(timesDailyKey, now, stimeDaily)
    .zadd(tempKeyMin, responseTime, 'min')
    .zadd(tempKeyMax, responseTime, 'max')
    .zunionstore(statsHourlyKey, 2, statsHourlyKey, tempKeyMin, 'aggregate', 'min')
    .zunionstore(statsHourlyKey, 2, statsHourlyKey, tempKeyMax, 'aggregate', 'max')
    .zunionstore(statsDailyKey, 2, statsDailyKey, tempKeyMin, 'aggregate', 'min')
    .zunionstore(statsDailyKey, 2, statsDailyKey, tempKeyMax, 'aggregate', 'max')
    .zincrby(statsHourlyKey, 1, 'count')
    .zincrby(statsDailyKey, 1, 'count')
    .zincrby(statsHourlyKey, responseTime, 'sum')
    .zincrby(statsDailyKey, responseTime, 'sum')
    .expire(tempKeyMin, 10)
    .expire(tempKeyMax, 10)
    .exec((err, results) => {
      // check
    });

}

Each metric record will have the following parameters.

  • min. The value will be updated by aggregating the latest value in the temporary record with the current value in the metric record using zunionstore and the aggregate min method.
  • max. The value will be updated by aggregating the latest value in the temporary record with the current value in the metric record using zunionstore and the aggregate max method.
  • count. The value will be incremented by one in each function call.
  • sum. The value will be incremented by the response time value in each function call.

Comments

Popular posts from this blog

Kerusakan pada Motherboard

1. Sering terjadi hang memory tidak cocok --- ganti memory ada virus di harddisk --- scan harddisk over clock --- seting kembali clock prosesor ada bad sector di harddisk --- partisi harddisk dengan benar 2. Pembacaan data menjadi lambat memori tidak cukup --- tambah memori harddisk penuh atau ada virus --- kurangi isi harddisk, scan harddisk, atau ganti hardisk 3. CMOS failure baterai habis --- ganti baterai CMOS seting BIOS berubah --- seting kembali BIOS 4. Tidak bisa booting cache memory rusak --- disable eksternal cache memory di BIOS memori tidak cocok --- ganti memori boot sector pada harddisk rusak --- masukkan operating system baru ada bad sector pada trek awal harddisk --- partisi harddisk 5. Suara bip panjang berkali-kali memori rusak --- periksa kedudukan memori memori tidak cocok --- ganti memori memori tidak masuk slot dengan sempurna --- periksa kembali kedudukan memori 6. Suara bip bagus tetapi tidak ada tampilan / bip dua kali VGA card

Rangkaian Sensor Infrared dengan Photo Dioda

Keunggulan photodioda dibandingkan LDR adalah photodioda lebih tidak rentan terhadap noise karena hanya menerima sinar infrared, sedangkan LDR menerima seluruh cahaya yang ada termasuk infrared. Rangkaian yang akan kita gunakan adalah seperti gambar di bawah ini. Pada saat intensitas Infrared yang diterima Photodiode besar maka tahanan Photodiode menjadi kecil, sedangkan jika intensitas Infrared yang diterima Photodiode kecil maka tahanan yang dimiliki photodiode besar. Jika  tahanan photodiode kecil  maka tegangan  V- akan kecil . Misal tahanan photodiode mengecil menjadi 10kOhm. Maka dengan teorema pembagi tegangan: V- = Rrx/(Rrx + R2) x Vcc V- = 10 / (10+10) x Vcc V- = (1/2) x 5 Volt V- = 2.5 Volt Sedangkan jika  tahanan photodiode besar  maka tegangan  V- akan besar  (mendekati nilai Vcc). Misal tahanan photodiode menjadi 150kOhm. Maka dengan teorema pembagi tegangan: V- = Rrx/(Rrx + R2) x Vcc V- = 150 / (150+10) x Vcc V- = (150/160) x 5

Itachi Uchiha

The Real Hero of Konoha

Refund Tiket Kereta Api

Pada Desember 2013 saya telah berencana untuk pergi ke Kebumen dari Bandung menggunakan kereta api. Namun karena ada tugas yang mendesak maka saya membatalkan rencana tersebut. Tiket saya beli secara online. Pada waktu itu peraturan pembatalan pembelian tiket adalah 1 jam sebelum keberangkatan. Saya mengajukan pembatalan pada satu hari sebelum keberangkatan. Langkah-langkah pengajuan refund adalah seperti berikut. Jika Anda membeli tiket secara online, cetaklah tiket Anda terlebih dahulu di stasiun. Untuk stasiun Bandung lokasi pencetakan tiket di dekat loket Costumer Service. Pencetakan dilakukan sendiri (self service) menggunakan perangkat komputer yang disediakan dengan memasukkan kode booking pada aplikasi yang ada. Setelah itu Anda dapat bertanya pada petugas di mana loket untuk pengajuan refund. Untuk stasiun Bandung loket untuk pengajuan refund saat itu berada di loket terakhir yaitu loket 9.  Setelah menunjukkan tiket maka kita diminta mengisi formulir pengajuan pembatalan.

Setting Up Next.js Project With ESLint, Typescript, and AirBnB Configuration

If we initiate a Next.js project using the  create-next-app tool, our project will be included with ESLint configuration that we can apply using yarn run lint . By default, the tool installs eslint-config-next and extends next/core-web-vitals in the ESLint configuration. The Next.js configuration has been integrated with linting rules for React and several other libraries and tools. yarn create next-app --typescript For additional configuration such as AirBnB, it is also possible. First, we need to install the peer dependencies of eslint-config-airbnb . We also add support for Typescript using eslint-config-airbnb-typescript . yarn add --dev eslint-config-airbnb eslint-plugin-import eslint-plugin-jsx-a11y eslint-plugin-react eslint-plugin-react-hooks yarn add --dev eslint-config-airbnb-typescript @typescript-eslint/eslint-plugin @typescript-eslint/parser After that, we can update the .eslintrc.json file for the new configuration. { "extends": [ "airb

Raspberry Pi Bluetooth Connection

Raspberry Pi 3 provides a built-in Bluetooth module. The latest Raspbian has been bundled with tools for enabling Bluetooth connection. The Bluetooth icon will be shown up on the top right corner of the desktop. It's a tool to discover available Bluetooth devices and connect Pi with Bluetooth devices. It is easy to connect any Bluetooth-enabled electronic device with Pi. But, sometimes Pi will fail to connect, especially for Bluetooth device that has no standardized services. From a terminal, we can use the  bluetoothctl tool to scan and connect with a Bluetooth device. You should make sure that the BlueZ protocol stack has been installed by running $ apt-get install bluez Run bluetoothctl to enter the tool command window Turn the power on by running power on (Optional) You can set AutoEnable=true in /etc/bluetooth/main.conf if you want to make the Bluetooth auto power-on after reboot. Run devices to see which devices have been paired Run scan on if your desired d