Skip to main content

Building Reducer Using Redux Toolkit

Redux Toolkit is one of the libraries that can help us manage our application state which depends on Redux. It allows us to create reducers within our application and separate each reducer from one another based on any criteria that we desired in a specific kind of module. There are some approaches that we can utilize to build reducers in Redux Toolkit.


Basic Shape
const slice = createSlice({
    // ...
    reducers: {
    	increment: (state) => {
        	state += 1;
        }
    } 
});

On the code above, it seems that we mutate the state, but actually, Redux Toolkit utilizes Immer in the backstage so it will be translated into immutable operation. Then, unlike legacy libraries that require us to manually define the action that will be dispatched to be handled by a specific reducer, Redux Toolkit can generate action creators for us.

const { increment } = slice.actions; // "increment" is the action creator

Then, we can dispatch the action inside our component following any activity we desired.

<button onClick={ () => dispatch(increment()) }>Add</button>

Basic Shape With Payload

Commonly we need to pass a payload to be processed by the reducer. It can be achieved by utilizing the second parameter in a reducer function.

const slice = createSlice({
    // ...
    reducers: {
    	incrementBy: (state, action: PayloadAction<number>) => {
        	state += action.payload;
        }
    } 
});

Reducer With Pre-formatted Payload

Sometimes, we need to pre-format our payload before it is consumed by the reducer. We can declare our reducer as an object with specific properties rather than as a single function as the previous ones.

const slice = createSlice({
    // ...
    reducers: {
    	createArticle: {
            reducer: (state, action: PayloadAction<any>) => {
            	// do something
            },
            prepare: (title, author) => ({
            	payload: {
                    id: uuid(),
                    title,
                    author,
                    createdOn: Date.now(),
                }
            }),
        }
    } 
});

Then, we can pass the parameters which align with the configuration when we dispatch the action.

dispatch(createArticle(title, author));

Dispatching Action with Thunk Function

Originally, Redux Toolkit is integrated with thunk middleware that allows a function to be passed into a dispatch call and to interact with the dispatch and getState methods inside it. It can be used to perform asynchronous logic before dispatching specific actions.

const sampleThunk = (dispatch, getState) => {
  setTimeout(() => {
    const currentState = getState();
    dispatch(increment());
    const nextState = getState();
  }, 2000);
}

dispatch(sampleThunk)

If we want some data to be passed to the function, we can create a wrapper for that.

const sampleThunk = (amount) => (dispatch, getState) => {
  setTimeout(() => {
    const currentState = getState();
    dispatch(incrementBy(amount));
    const nextState = getState();
  }, 2000);
}

dispatch(sampleThunk(10))

Asynchronous Thunk using createAsyncThunk

The createAsyncThunk function will generate a thunk function that can provide a mechanism to interact with the store or auto-dispatch certain actions. It can be used when we want to monitor the states of asynchronous calls and then perform any action related to it. The function accepts two parameters, the first is the action name, and the second is the payload creator.

const getAllArticles = createAsyncThunk('article/getAllArticles', async (data?: any) => {
  const response = await client.get('http://localhost:3000/article');
  return response.data;
});

Now, the getAllArticles function can be passed into a dispatch call.

dispatch(getAllArticles());

Besides that, the variable will be appended with additional action creator properties related to an asynchronous activity that can be read to initiate specific actions and handled by reducers. The properties are pending, fullfiled, and rejected. Now, we can create extra reducers in our slice definition.

const slice = createSlice({
    reducers: {
    	// ...
    },
    extraReducers: (builder) => {
      builder
        .addCase(getAllArticles.pending, (state) => {
          // do something
        })
        .addCase(getAllArticles.fulfilled, (state, action: PayloadAction<Article[]>) => {
          // do something
        })
        .addCase(getAllArticles.rejected, (state, action) => {
          // do something
        });
  },
});

We can also perform additional actions in our component related to asynchronous results other than what is performed in the slice by using the unwrap method which is available when the dispatch function is instantiated.

try {
	await dispatch(getAllArticles()).unwrap()
	// do something
} catch (err) {
	console.error('Failed to get the articles: ', err)
} finally {
	// do something
}

Comments

Popular posts from this blog

Deliver SaaS According Twelve-Factor App

If you haven't heard of  the twelve-factor app , it gives us a recommendation or a methodology for developing SaaS or web apps structured into twelve items. The recommendation has some connections with microservice architecture and cloud-native environments which become more popular today. We can learn the details on its website . In this post, we will do a quick review of the twelve points. One Codebase Multiple Deployment We should maintain only one codebase for our application even though the application may be deployed into multiple environments like development, staging, and production. Having multiple codebases will lead to any kinds of complicated issues. Explicitly State Dependencies All the dependencies for running our application should be stated in the project itself. Many programming languages have a kind of file that maintains a list of the dependencies like package.json in Node.js. We should also be aware of the dependencies related to the pla...

Rangkaian Sensor Infrared dengan Photo Dioda

Keunggulan photodioda dibandingkan LDR adalah photodioda lebih tidak rentan terhadap noise karena hanya menerima sinar infrared, sedangkan LDR menerima seluruh cahaya yang ada termasuk infrared. Rangkaian yang akan kita gunakan adalah seperti gambar di bawah ini. Pada saat intensitas Infrared yang diterima Photodiode besar maka tahanan Photodiode menjadi kecil, sedangkan jika intensitas Infrared yang diterima Photodiode kecil maka tahanan yang dimiliki photodiode besar. Jika  tahanan photodiode kecil  maka tegangan  V- akan kecil . Misal tahanan photodiode mengecil menjadi 10kOhm. Maka dengan teorema pembagi tegangan: V- = Rrx/(Rrx + R2) x Vcc V- = 10 / (10+10) x Vcc V- = (1/2) x 5 Volt V- = 2.5 Volt Sedangkan jika  tahanan photodiode besar  maka tegangan  V- akan besar  (mendekati nilai Vcc). Misal tahanan photodiode menjadi 150kOhm. Maka dengan teorema pembagi tegangan: V- = Rrx/(Rrx + R2) x Vcc V- = 150 / (1...

Configuring Swap Memory on Ubuntu Using Ansible

If we maintain a Linux machine with a low memory capacity while we are required to run an application with high memory consumption, enabling swap memory is an option. Ansible can be utilized as a helper tool to automate the creation of swap memory. A swap file can be allocated in the available storage of the machine. The swap file then can be assigned as a swap memory. Firstly, we should prepare the inventory file. The following snippet is an example, you must provide your own configuration. [server] 192.168.1.2 [server:vars] ansible_user=root ansible_ssh_private_key_file=~/.ssh/id_rsa Secondly, we need to prepare the task file that contains not only the tasks but also some variables and connection information. For instance, we set /swapfile  as the name of our swap file. We also set the swap memory size to 2GB and the swappiness level to 60. - hosts: server become: true vars: swap_vars: size: 2G swappiness: 60 For simplicity, we only check the...

Free Cloud Services from UpCloud

Although I typically deploy my development environment or experimental services on UpCloud , I do not always stay updated on its announcements. Recently, I discovered that UpCloud has introduced a new plan called the Essentials plan, which enables certain cloud services to be deployed at no cost. The complimentary services are generally associated with network components or serve as the foundation for other cloud services. This feature is particularly useful when retaining foundational services, such as a load balancer, is necessary, while tearing down all services and reconfiguring the DNS and other application settings each time we temporarily clean up infrastructure to reduce costs is undesirable.  When reviewing the service specifications of the cloud services in the Essentials plan, they appear to be very similar to those in the Development plan. The difference in service levels is unclear, but it could be related to hardware or resource allocation. For instance, the loa...

Deploying a Web Server on UpCloud using Terraform Modules

In my earlier post , I shared an example of deploying UpCloud infrastructure using Terraform from scratch. In this post, I want to share how to deploy the infrastructure using available Terraform modules to speed up the set-up process, especially for common use cases like preparing a web server. For instance, our need is to deploy a website with some conditions as follows. The website can be accessed through HTTPS. If the request is HTTP, it will be redirected to HTTPS. There are 2 domains, web1.yourdomain.com and web2.yourdomain.com . But, users should be redirected to "web2" if they are visiting "web1". There are 4 main modules that we need to set up the environment. Private network. It allows the load balancer to connect with the server and pass the traffic. Server. It is used to host the website. Load balancer. It includes backend and frontend configuration. Dynamic certificate. It is requ...

Manage Kubernetes Cluster using Rancher

Recently, I sought a simpler method to deploy and maintain Kubernetes clusters across various cloud providers. The goal was to use it for development purposes with the ability to manage the infrastructure and costs effortlessly. After exploring several options, I decided to experiment with Rancher. Rancher offers a comprehensive software stack for teams implementing container technology. It tackles both the operational and security hurdles associated with managing numerous Kubernetes clusters. Additionally, it equips DevOps teams with integrated tools essential for managing containerized workloads. Rancher also offers an open-source version, allowing free deployment within one's infrastructure. The Rancher platform can be deployed either as a Docker container or within a Kubernetes cluster utilizing the K3s engine. We can read the documentation on how to install Rancher on K3s using Helm . Rancher itself enables the creation and provisioning of Kubernetes clusters and ...